Topic 2: Streaming Wavelet Data

Topic 2: Streaming Wavelet Data

Often, CSL programs contain tasks that are activated in response to the arrival of wavelets of specific colors. Such tasks are also called Wavelet-Triggered Tasks, or data tasks.

In this example, the comptime block binds a data task to a data_task_id created from a memcpy streaming color, which receives data from the host. The routing of the color MEMCPYH2D_DATA_1 must not be defined. The memcpy module will figure out the routing of MEMCPYH2D_DATA_1.

Given the task and color association and the route, when a wavelet of color MEMCPYH2D_DATA_1 arrives at the router, it is forwarded to the CE, which then activates main_task. The wavelet’s payload field is received in the argument to the task, and the code uses the wavelet data to update a global variable.

layout.csl

// color/ task ID map
//
//  ID var                ID var         ID var                ID var
//   0 MEMCPY_H2D_DATA_1   9             18                    27 reserved (memcpy)
//   1 MEMCPY_D2H_DATA_1  10             19                    28 reserved (memcpy)
//   2                    11             20                    29 reserved
//   3                    12             21 reserved (memcpy)  30 reserved (memcpy)
//   4                    13             22 reserved (memcpy)  31 reserved
//   5                    14             23 reserved (memcpy)  32
//   6                    15             24                    33
//   7                    16             25                    34
//   8                    17             26                    35

// IDs for memcpy streaming colors
param MEMCPYH2D_DATA_1_ID: i16;
param MEMCPYD2H_DATA_1_ID: i16;

// Colors
const MEMCPYH2D_DATA_1: color = @get_color(MEMCPYH2D_DATA_1_ID);
const MEMCPYD2H_DATA_1: color = @get_color(MEMCPYD2H_DATA_1_ID);

// Task IDs
const main_task_id: data_task_id = @get_data_task_id(MEMCPYH2D_DATA_1);

const memcpy = @import_module( "<memcpy/get_params>", .{
  .width = 1,
  .height = 1,
  .MEMCPYH2D_1 = MEMCPYH2D_DATA_1,
  .MEMCPYD2H_1 = MEMCPYD2H_DATA_1
});

layout {
  @set_rectangle(1, 1);

  @set_tile_code(0, 0, "pe_program.csl",  .{
    .memcpy_params = memcpy.get_params(0),
    .main_task_id = main_task_id
  });
}

pe_program.csl

// Not a complete program; the top-level source file is layout.csl.

param memcpy_params: comptime_struct;

// Task IDs
param main_task_id: data_task_id; // Data task main_task triggered by wlts along MEMCPYH2D_DATA_1

const sys_mod = @import_module( "<memcpy/memcpy>", memcpy_params);

export var global: i16 = 0;

const out_dsd = @get_dsd(fabout_dsd, .{
   .extent = 1,
   .fabric_color = sys_mod.MEMCPYD2H_1
});

task main_task(wavelet_data: i16) void {
  global = wavelet_data;
  // The non-async operation works here because only one wavelet is sent
  // It would be better to use async operation with .{async = true}
  @mov16(out_dsd, global);
}

comptime {
  @bind_data_task(main_task, main_task_id);
}

run.py

#!/usr/bin/env cs_python

import argparse
import json
import numpy as np

from cerebras.sdk.sdk_utils import memcpy_view, input_array_to_u32
from cerebras.sdk.runtime.sdkruntimepybind import SdkRuntime, MemcpyDataType # pylint: disable=no-name-in-module
from cerebras.sdk.runtime.sdkruntimepybind import MemcpyOrder # pylint: disable=no-name-in-module

parser = argparse.ArgumentParser()
parser.add_argument('--name', help='the test name')
parser.add_argument("--cmaddr", help="IP:port for CS system")
args = parser.parse_args()
dirname = args.name

# Parse the compile metadata
with open(f"{dirname}/out.json", encoding="utf-8") as json_file:
  compile_data = json.load(json_file)
params = compile_data["params"]
MEMCPYH2D_DATA_1 = int(params["MEMCPYH2D_DATA_1_ID"])
MEMCPYD2H_DATA_1 = int(params["MEMCPYD2H_DATA_1_ID"])
print(f"MEMCPYH2D_DATA_1 = {MEMCPYH2D_DATA_1}")
print(f"MEMCPYD2H_DATA_1 = {MEMCPYD2H_DATA_1}")

memcpy_dtype = MemcpyDataType.MEMCPY_16BIT
runner = SdkRuntime(dirname, cmaddr=args.cmaddr)

runner.load()
runner.run()

input_tensor = np.array([42], dtype=np.int16)

print("step 1: streaming H2D")
# "input_tensor" is a 1d array
# The type of input_tensor is int16, we need to extend it to uint32
# There are two kind of extension when using the utility function input_array_to_u32
#    input_array_to_u32(np_arr: np.ndarray, sentinel: Optional[int], fast_dim_sz: int)
# 1) zero extension:
#    sentinel = None
# 2) upper 16-bit is the index of the array:
#    sentinel is Not None
#
# In this example, the upper 16-bit is don't care because pe_program.csl only define
# WTT to read lower 16-bit
#tensors_u32 = runtime_utils.input_array_to_u32(input_tensor, 1, 1)
tensors_u32 = input_array_to_u32(input_tensor, 1, 1)
runner.memcpy_h2d(MEMCPYH2D_DATA_1, tensors_u32, 0, 0, 1, 1, 1, \
    streaming=True, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)

print("step 2: streaming D2H")
# The D2H buffer must be of type u32
out_tensors_u32 = np.zeros(1, np.uint32)
runner.memcpy_d2h(out_tensors_u32, MEMCPYD2H_DATA_1, 0, 0, 1, 1, 1, \
    streaming=True, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
# remove upper 16-bit of each u32
result_tensor = memcpy_view(out_tensors_u32, np.dtype(np.int16))

runner.stop()

# Ensure that the result matches our expectation
np.testing.assert_equal(result_tensor, [42])
print("SUCCESS!")

commands.sh

#!/usr/bin/env bash

set -e

cslc ./layout.csl --fabric-dims=8,3 \
--fabric-offsets=4,1 -o out \
--params=MEMCPYH2D_DATA_1_ID:0 \
--params=MEMCPYD2H_DATA_1_ID:1 \
--memcpy --channels=1 --width-west-buf=0 --width-east-buf=0
cs_python run.py --name out